Question Number	Answer	Mark
1(a)	Sketch a vector diagram Correct diagram - closed polygon, accept a triangle using the resultant of lift and weight, but arrows must follow correctly. Must show sequence of tip-to-tail arrowed vectors.	(1)
1(b)	Find the tension in the string. Use of trigonometrical function for the horizontal angle (allow mark for vertical angle if correct and shown on dia) Correct answer for horizontal angle (32.8°) Use of Pythagoras or trigonometrical function for the tension Correct answer for tension magnitude (7.1 N) $\begin{aligned} & \text { Example of calculation } \\ & \text { weight - lift }=3.86 \mathrm{~N} \\ & \text { from horizontal, } \tan (\text { angle })=3.86 \mathrm{~N} / 6.0 \mathrm{~N} \\ & \text { angle }=32.8^{\circ} \\ & \mathrm{T}^{2}=\mathrm{F}_{\mathrm{h}}{ }^{2}+\mathrm{F}_{\mathrm{v}}{ }^{2} \\ & =(6.0 \mathrm{~N})^{2}+(3.86 \mathrm{~N})^{2} \\ & \mathrm{~T}=7.1 \mathrm{~N} \end{aligned}$	(1) (1) (1) (1)
1(c) (i)	Calculate the work done by the girl. Use of $\mathrm{W}=\mathrm{Fs}$ Correct answer (150 J) Example of calculation $\begin{aligned} & \mathrm{W}=\mathrm{Fs}=6.0 \mathrm{~N} \times 25 \mathrm{~m} \\ & =150 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & (1) \end{aligned}$
1(c) (ii)	Calculate rate at which work is done Finds time Correct rate (12 W) Example of calculation $\begin{aligned} & \mathrm{t}=\mathrm{s} / \mathrm{v}=25 \mathrm{~m} / 2.0 \mathrm{~m} \mathrm{~s}^{-1}=12.5 \mathrm{~s} \\ & \mathrm{P}=150 \mathrm{~J} / 12.5 \mathrm{~s} \\ & =12 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
	Total for question	9

Question Number	Answer	Mark
2 (a)	Explain whether the spring obeys Hooke's law. States: Straight line shown / constant gradient (So) extension or change in length proportional to force (accept Δx or Δl or e proportional to F) / k constant (Yes, because extension or change in length proportional to force gets 2)	(1) (1)
2 (b)	Show that the stiffness of the spring is about $20 \mathrm{~N} \mathrm{~m}^{-1}$ Indication of use of (inverse) gradient, e.g. $k=F / \Delta x$ or with values obtainable from graph (accept extension/force for first mark) Substitution of values as force/ extension Correct answer ($16\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$) Example of calculation $\begin{aligned} & \mathrm{k}=\mathrm{F} / \Delta \mathrm{x} \\ & \mathrm{k}=1.6 \mathrm{~N} /(0.51 \mathrm{~m}-0.41 \mathrm{~m}) \\ & \mathrm{k}=1.6 \mathrm{~N} / 0.1 \mathrm{~m} \\ & =16 \mathrm{~N} \mathrm{~m}^{-1} \end{aligned}$	(1) (1) (1)
2 (c) (i)	Calculate force on spring Use of $\mathrm{F}=\mathrm{k} \Delta \mathrm{x}$ (must be extension, not length) Correct answer (5.1 N) [ecf] Example of calculation $\begin{aligned} & \mathrm{F}=\mathrm{k} \Delta \mathrm{x} \\ & =16 \mathrm{~N} \mathrm{~m}^{-1} \times(0.41 \mathrm{~m}-0.09 \mathrm{~m}) \\ & =5.1 \mathrm{~N} \\ & \text { (Use of } 20 \mathrm{~N} \mathrm{~m}^{-1} \rightarrow 6.4 \mathrm{~N} \text {) } \end{aligned}$	(1) (1)
$\begin{aligned} & 2 \text { (c) } \\ & \text { (ii) } \end{aligned}$	Calculate energy stored Use of $E=1 / 2 F \Delta x==1 / 2 k(\Delta x)^{2}$ Correct answer (0.82 J) Example of calculation $\begin{aligned} & \mathrm{E}=1 / 2 \mathrm{~F} \Delta \mathrm{x} \\ & =0.5 \times 5.1 \mathrm{~N} \times(0.41 \mathrm{~m}-0.09 \mathrm{~m}) \\ & =0.82 \mathrm{~J} \end{aligned}$	(1) (1)

2 (d)	Explain effect on spring	
	QWC - spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Change in length greater / compression greater More force More elastic energy / more strain energy / more energy stored / more potential energy / greater $1 / 2 \mathrm{k}(\Delta \mathrm{x})^{2} /$ more work done (on spring) Greater acceleration (Therefore) more kinetic energy (and) greater speed	(1)
	(1) (1)	
	(1)	

Question Number	Answer	Mark
$\mathbf{3}$	Addition of words (order essential)	
	photon	$\mathbf{1}$
	metal	1
	energy (allow mass, charge, momentum)	1
	(photo)electron	1
	work function (of the metal)	$\mathbf{1}$
		$\mathbf{5}$

Question Number	Answer		Mark
4(a)	Use of $v=u+a t$ Or use of area under the graph (for either area) $v=3.2\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Example of calculation $\begin{aligned} & v=0+\left(2 \mathrm{~m} \mathrm{~s}^{-2} \times 1.6 \mathrm{~s}\right) \\ & v=3.2 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1) (1)	2
4(b)	Diagonal line from 0 to $3.2 \mathrm{~m} \mathrm{~s}^{-1}$ over first 1.6 s (allow show that value or candidate's values for v and t from (a)) Region of constant, non-zero velocity (from 1.6 s to 3 s) Deceleration from candidate's maximum positive velocity to 0 over last 4 s	(1) (1) (1)	3
4(c)	Use of area under their graph in (b) Or use of correct equation(s) of motion Correct values substituted into a method for calculating the area under their graph e.g. trapezium method $3.2 \times \frac{1.4+7}{2}$ $s=13 \mathrm{~m} \quad$ (Full ecf from (b)) ($s=12.6 \mathrm{~m}$ using the show that value of $3 \mathrm{~m} \mathrm{~s}^{-1}$ for max velocity) Example of calculation $\begin{aligned} & s=\left(1 / 2 \times 3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 1.6 \mathrm{~s}\right)+\left(3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 1.4 \mathrm{~s}\right)+\left(1 / 2 \times 3.2 \mathrm{~m} \mathrm{~s}^{-1} \times 4 \mathrm{~s}\right) \\ & s=2.56+4.48+6.4=13.4 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
4(d)(i)	Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ $E_{\mathrm{k}}=0.61 \mathrm{~J} \quad$ (ecf for velocity from (a)) (Show that value gives 0.54 J) Example of calculation $\begin{aligned} & E_{\mathrm{k}}=1 / 2 \times 0.12 \mathrm{~kg} \times\left(3.2 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & E_{\mathrm{k}}=0.61 \mathrm{~J} \end{aligned}$	(1) (1)	2
4(d)(ii)	$\begin{aligned} & \text { Use of power = energy/time } \\ & P=0.38 \mathrm{~W} \quad(\text { ecf from }(\mathrm{d})(\mathrm{i})) \\ & \left(P=0.34 \mathrm{~W} \text { using the show that value of } v=3 \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \begin{array}{l} \text { Example of calculation } \\ P=\frac{0.61 \mathrm{~J}}{1.6 \mathrm{~s}} \\ P=0.38 \mathrm{~W} \end{array} \\ & \hline \end{aligned}$	(1) (1)	2
	Total for Question		12

Question Number	Answer	Mark
5(a)	Statement showing that the candidate has realised that this graph is of length and not extension [e.g. subtract starting length for extension this graph is for length not extension the spring has a length between 2.0 and 3.0 cm if the line (for this graph) had passed through the origin then the spring would not have any length] (To obey Hooke's law) Force \propto extension Or extension v force (or vice-versa) graph should go through the origin	(1)

